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Abstract A new kind of hybrid plasmonic waveguide is pro-
posed, and its propagation properties are investigated using
the finite-element method. This waveguide consists of a V-
shaped silver nanowire embedded in a low-index dielectric
cladding above a semiconductor substrate, which can confine
light in the subwavelength region with a long propagation
length. The field distribution, the mode effective index, the
propagation length, and the normalized mode area of the hy-
brid mode supported by the waveguide are investigated at the
wavelength of 1550 nm, which are dependent on the geomet-
ric parameters.
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Introduction

Surface plasmon polaritons (SPPs) are electromagnetic
waves that propagate along the interface between a metal
and a dielectric with their power exponentially decaying
in both media [1]. SPPs waveguides are regarded as the
suitable candidates for guiding light in nanophotonic in-
tegrated circuits due to they can confine and guide light
in nanoscale beyond the diffraction limit [2, 3]. Till now,

a variety of plasmonic structures have been demonstrated
numerically and experimentally, such as metal nanowire
waveguides [4–7], metal slot waveguides [8–10], metal-
insulator-metal waveguides [11, 12], and metal wedge
waveguides [13–16]. However, due to the large ohmic
loss induced by the metallic components, there is a
trade-off relation between the field confinement and
propagation length for these plasmonic waveguides. In
general, a good field confinement is usually accompanied
with a very short propagation length and vice versa.

In order to balance the trade-off relation between the
field confinement and propagation length, a so-called hy-
brid plasmonic waveguide (HPW) has been proposed
[17, 18]. Recently a number of HPW consisting of a
metallic nanostructure embedded in a low-index dielec-
tric cladding above a high-index substrate have been pro-
posed and demonstrated [19–34], which showed that a
strong confinement with reasonable propagation length
could be gained. In order to improve the density of the
circuit and components in subwavelength photonic inte-
grations, it is hoped that the field confinement is stronger
the better. Researches show that the narrow space be-
tween the metal and dielectric can confine light; on the
other hand, sharp metallic edges have good field confine-
ment [35].

In this paper, combining a low-index dielectric nano-
scale gap and sharp metallic edges, we propose a new
kind of HPW, which consists of a V-shaped silver nano-
wire embedded in a low-index dielectric cladding above
a semiconductor substrate. Numerical simulation results
show that the proposed HPW could achieve very small
effective mode area and long propagation length. Our
analysis revealed that the mechanisms of the strong field
confinement are the lateral confinement and field en-
hancement around the tip of V-shaped silver nanowire.
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Waveguide Structure

The cross section schematic geometry of proposed V-Shaped
HPW is shown in Fig. 1, where a V-shaped silver nanowire is
separated from the semiconductor (Si) substrate by a nano-
scale low-index dielectric (SiO2) gap with height of g. The
hypotenuse, thickness, and vertex angle of the V-shaped silver
wedge are denoted as l, t, and α, respectively. The length and
width of the dielectric (SiO2) are 800 and 600 nm, respective-
ly. The characteristics of the V-shaped HPW are investigated
at the telecommunication wavelength λ=1550 nm, and the
refractive index of silver is obtained from Ref. [36]. The re-
fractive indices of Si and SiO2 are set to 3.476 and 1.444,
respectively.

The characteristics of the studied waveguide are in-
vestigated using the RF module of the finite-element-
based software Comsol Multiphysics 4.3. The main
properties of plasmonic waveguides include the mode
effective index (Neff), the propagation length (Lm), and
the normalized mode area (Aeff/A0). Here Neff is defined
as k/k0, where k and k0 = 2π/λ are the propagation con-
stants of the SPPs and the free space wave number,
respectively. The propagation length is defined as the
distance at which the field amplitude drops to 1/e of
its initial value and calculated as Lm= λ/[4πIm(Neff)],
where Im(Neff) is the imaginary part of Neff. The

normalized mode area is expressed by the formula
Aeff/A0, where A0 =λ

2/4 is the diffraction-limited mode
area in free space and the effective mode area Aeff is
defined as:

Aeff ¼ ∬W x; yð Þdxdy=max W x; yð Þ½ �

Where W x; yð Þ ¼ 1
2 ε Ej j2 þ 1

2μ0 Hj j2 is the energy density
and E, H, ε, μ0 being the electric field, magnetic field, dielec-
tric permittivity, and vacuum magnetic permeability,
respectively.

Numerical Results and Discussions

For comparison with the proposed hybrid waveguide, a
V-shaped silver nanowire embedded in air and a V-
shaped silver nanowire embedded in air clading above
Si substrate are also investigated at the telecommunica-
tion wavelength λ = 1550 nm, where the hypotenuse,
thickness and the vertex angle of the V-shaped silver
wedge are fixed at 300 nm, 50 nm, and 90°, respective-
ly. The electric field patterns of the three waveguides
are shown in Fig. 2a–c. As shown in Fig. 2a, the light
is distributed in three tips of the V-shaped silver nano-
wire from Fig. 2b, c, it is clear that the light is tightly
confined in the nanoscale gap; it makes light propaga-
tion in the non-metallic regions, thus enabling strong
confinement with reasonable propagation length. The
normalized mode areas of the structures in Fig. 2a–c
are 0.00253, 0.00704, and 0.00235 with the propagation
lengths are 69.8, 1260.4, and 220.8 μm, respectively.
Therefore, the proposed hybrid waveguide shows great
advantages of better confinement with moderate propa-
gation length.

The dimensions of the V-shaped silver strongly influ-
ence the mode properties. We investigate the effect of
the vertex angle α and the gap g on mode properties of

Fig. 1 Schematic diagram of the cross-section of the proposed HPW
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Fig. 2 Contour profiles of the
normalized |E| fields of a the V-
shaped silver nanowire, b the V-
shaped silver nanowire embedded
in air clading above Si substrate,
and c the proposed HPW
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the V-shaped HPW, where the hypotenuse and thickness
of the V-shaped silver wedge are fixed at 300 and
50 nm. Figure 3a–c shows the dependence of real part
of the mode effective index (neff), the propagation
length (Lm), and the normalized mode area (Am/A0), re-
spectively, on the vertex angle α with the gap g. As
shown in Fig. 3a–c, when the vertex angle α increases
from 20 to 120°, the normalized mode area increasing
monotonically. The mode effective index decreasing at
first and then increasing, the minima of the mode effec-
tive index happens when the vertex angle α is 60°. The
propagation length increasing first before decreasing,
leading to a moderate angle α of 90°. From Fig. 3b,
c, we can see that at the same vertex angle α, the
propagation length and the normalized mode area in-
crease by increasing the gap g.

To depict this phenomenon, we not only plot the
electric field pattern, but also investigated the energy
confinement ratio in the low-index cladding, metal and
semiconductor substrate with change of α in the case of
g= 10 nm, respectively. For a small vertex angle (less
than 90°), as shown in Fig. 3d where the electric field
is highly localized around the metal nanowedge tip,
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Fig. 3 Dependence of the V-haped HPWmode’s properties on the vertex
angle α with the different gap sizes g. a Real part of the mode effective
index (neff). b the propagation length (Lm). c the normalized mode area

(Aeff/A0). Contour profiles of the normalized |E| fields of d [α= 20°], e
[α= 60°], f [α= 90°], and g [α= 120°], with the gap size g= 10 nm

Fig. 4 Energy confinement ratio of the HPW with different angle α
(g = 10 nm) in silver, cladding and semiconductor substrate regions,
respectively
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which will result in a shorter propagation length due to
relatively high ohmic loss. If the vertex angle is larger
than 90°, a greater proportion of the electric field
spreads laterally along the metal wedge, leading to a
significantly increased mode area, resulting in a larger
scattering loss and shorter propagation length.

In order to explain the behaviors of the neff, Lm, and
Am/A0 more clearly, the energy confinement ratio was
investigated, as shown in Fig. 4. The energy confine-
ment ratio is defined as the ratio of the energy confined
in certain area to the total energy. The loss of the HPW
mainly depends on the absorption of the metal, the en-
ergy distributed in the metal region decreasing first be-
fore it increasing as shown in Fig. 4 leads to the prop-
agation length increasing first before it decreasing
(shown in Fig. 3b), for a appropriate vertex angle such
as 90°, relatively less energy is distributed in the metal
region resulting in a longer propagation length. Since
the energy distributed in the silica cladding decreases
at first and then increases as shown in Fig. 4, the in-
teraction between the silicon substrate and the metal
becomes weak at first and then strong, leading to a
decrease at first and then an increase in neff (shown in
Fig. 3a). For the Am/A0, its behavior is in accord with
the analysis that field confinement is stronger in small
vertex angle area α and vice versa.

Next, we investigate the effect of the vertex angle on
the properties of the HPW with different V-shaped sil-
ver wedge thickness, the other parameters of the wave-
guide are fixed at g= 10 and l= 300 nm, as shown in
Fig. 5a–c. For a small vertex angle α, the electric field
is highly localized around the metal nanowedge tip,
resulting in the neff and Lm remaining unchanged by

increasing the thickness of V-shaped silver wedge.
While increasing the thickness of V-shaped silver wedge
with a large vertex angle α, the weaker interaction be-
tween the silicon substrate and metal, leading to a de-
crease in neff and an increase in Lm. For the Am/A0, its
behavior is in accord with the previous analysis that
field confinement is depend on the vertex angle α with
the same gap g.

The effect of the vertex angle α on the properties of
the HPW with different V-shaped silver wedge hypote-
nuse is investigated, the other parameters of the wave-
guide are fixed at g= 10 and, t= 40 nm, as shown in
Fig. 6a–c. From Fig. 6, we can see that at a larger
vertex angle α, the increased hypotenuse of V-shaped
silver wedge could result in further reduced propagation
loss, leading to a propagation length slightly increasing,
while at a small vertex angle α, the neff and Lm can still
be maintained unchanged. For the Am/A0, its behavior is
dependent on the vertex angle α.

Conclusion

In this paper, we have proposed a V-shaped HPW
which consists of a V-shaped silver nanowire embedded
in a low-index dielectric cladding above a semiconduc-
tor substrate. The existence of a low-index dielectric
nanoscale gap and sharp metallic edges could cause
strong field enhancement in the nanoscale gap and thus
enabling a strong confinement with reasonable propaga-
tion length. Our proposed structure is potential for
building ultra-compact plasmonic devices and high-
density photonic integrated circuits.

Fig. 5 Dependence of the V-shaped HPW mode’s properties on the vertex angle α (g= 10 nm) with fixed l= 300 nm for different t. a Real part of the
mode effective index (neff). b the propagation length (Lm). c the normalized mode area (Aeff/A0)

Fig. 6 Dependence of the V-shaped HPW mode’s properties on the vertex angle α (g = 10 nm) with fixed t= 40 nm for different l. a Real part of the
mode effective index (neff). b The propagation length (Lm). c The normalized mode area (Aeff/A0)
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